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Abstract
Random linear copolymers are linear polymers with two or more types of
monomer where the monomer sequence is determined by some random process.
Once determined the sequence is fixed so random copolymers are an example
of a system with quenched randomness. Even for simple configurational
models the quenched model is too difficult to solve analytically. The Morita
approximation is a partial annealing procedure which yields upper bounds on
the quenched average free energy. In this paper we consider higher order Morita
approximations in which we control correlations to various orders between
neighbouring monomers along the polymer chain. We consider different
approaches for incorporating correlations and apply these to Motzkin and Dyck
path models of the adsorption of a random copolymer at a surface. We also
present lower bounds which, along with the Morita bounds, determine the
limiting quenched average free energy for adsorption very precisely at low
temperatures.

PACS numbers: 05.50.+q, 05.70.Fh, 61.25.Hq, 64.60.Cn, 82.35.Gh, 82.35.Jk

Consider a linear polymer with two types of co-monomers, A,B. The sequence of As and
Bs making up the polymer is determined by a random process, but is then fixed, so that the
randomness is quenched. The appropriate free energy for such models is the expectation (over
the monomer distribution) of the logarithm of the partition function; this is referred to as the
quenched average free energy. In this paper we shall be concerned with adsorption of a random
copolymer at an impenetrable surface [1]. Even for simple models the quenched system is
too difficult to solve analytically [2]; see [3, 4] for corresponding results for the localization
problem. To make progress we either have to use numerical methods or an approximation.
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One approximation approach which has proved useful is based on an idea introduced by
Morita [5] in which the quenched average free energy is replaced by an annealed average
subject to constraints on the moments of the monomer distribution. This idea, developed in a
series of papers since 1963 [5–7], is based on the following facts: the quenched average free
energy is the solution to a constrained optimization problem in which all the moments of the
quenched probability distribution are fixed, and relaxing some of the moment constraints in
this optimization procedure yields an upper bound on the quenched average free energy [5, 7].

Previous work on random copolymer models using Morita approximation ideas has
focused on either an annealed approximation (with no moment constraints) or constraining
only the first moment so that the polymer has the correct proportion of As and Bs [1, 2]. One
might hope to improve the situation by fixing higher order moments. Caravenna and Giacomin
[8] have recently shown that for a set of models, including adsorption, if the annealed free
energy equals the quenched average free energy for one region of the phase diagram then
the bound on the location of the phase boundary obtained from the annealed approximation
will not be improved by introducing further constraints. In contrast, this does not however
preclude the bound on the quenched average free energy being improved by introducing further
constraints.

In this paper, we investigate the effect of including different types of constraints in a
Morita approximation for two directed walk models (Motzkin and Dyck paths) and we use
two different methods for obtaining bounds on the quenched average free energy: one is
based on a transfer matrix approach while the other relies on a direct application of renewal
arguments. The latter approach involves only constraints on the monomer distribution within
non-overlapping sequences of consecutive comonomers whereas the transfer matrix approach
takes into account constraints involving some overlapping comonomer sequences. In either
case, the bound can be expressed in terms of the free energy for a homopolymer problem
and this free energy can be obtained using renewal arguments. The upper bounds improve
(compared to previous work in [2]) the bounds on the free energy in the interior of the adsorbed
phase region. We show that the upper bounds are extremely good at least at low temperatures.

The adsorption model and Morita approximations

A Dyck path is a walk in two dimensions which

(i) starts at the origin and ends on the line y = 0,
(ii) has no vertices with negative y-coordinate, and

(iii) has steps (of length
√

2) only in the directions (1, 1) and (1,−1).

A Motzkin path differs from a Dyck path only by having three kinds of steps, (1, 1), (1,−1)

and (1, 0). In the Motzkin and Dyck path [9, 10] models for adsorption, any path ω of length
n can be represented by the sequence ω = (ω0, ω1, . . . , ωn), where ωi represents the ith
vertex of the path having x-coordinate i and y-coordinate ωi � 0. A vertex with y = 0 is
called a visit. Consider a sequence of i.i.d. Bernoulli random variables χ = (χ1, χ2, . . . , χn)

and associate it with the path ω by assigning the colour χi ∈ {0, 1} to vertex i. (χi = 1
corresponds to comonomer A at vertex i.) Let p be the probability that χi = 1. Let �i(ω)

be a function such that �i(ω) = 1 if ωi = 0 (visit) and �i(ω) = 0 otherwise (ωi > 0); let
�(ω) = (�i(ω), i = 1, . . . , n). The appropriate partition function for a given set, �n, of
n-edge paths and for fixed χ , is then

Zn(α|χ) =
∑
ω∈�n

exp

(
α

n∑
i=1

χi�i(ω)

)
. (1)
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The corresponding free energy is κn(α|χ) = n−1 log Zn(α|χ) and it is known that the limiting
quenched average free energy,

κ̄(α) = lim
n→∞〈κn(α|χ)〉 ≡ lim

n→∞ κ̄n(α), (2)

exists where the average is taken over the distribution of χ [11]. (The argument given in [11]
is for self-avoiding walks but applies mutatis mutandis for Motzkin and Dyck paths.) It is also
easy to prove that [11]:

• There exist constants κ , αq > 0 such that κ̄(α) = κ for α � αq and is greater than κ

otherwise. The constant κ = log 2 for Dyck paths and κ = log 3 for Motzkin paths.

• As α → ∞, κ̄(α) is asymptotic to a line with slope p/2 and p respectively for Dyck and
Motzkin paths.

For the annealed approximation, the limiting free energy is given by
limn→∞ n−1 log〈Zn(α|χ)〉 and there exists a critical value of α, denoted by αa , corresponding
to an adsorption transition, where αa = log(1+1/p) for Dyck paths [2] and αa = log(1+1/2p)

for Motzkin paths [1]. The limiting annealed free energy is asymptotic to a line with slope
1/2, 1 as α → ∞ for Dyck and Motzkin paths respectively. Note that this limiting slope
differs from that of the quenched average free energy. For a first-order Morita approximation
it is natural to constrain

〈∑
i χi

〉 = np where all vertices are treated equally. In this case
the critical value of α does not change with respect to the annealed approximation however
the slope of the asymptote changes to p for both Dyck and Motzkin paths. Note that this is
the correct asymptotic slope for Motzkin paths but not for Dyck paths. It is not correct for
Dyck paths since the constraint ignores the Dyck path property that only even vertices can lie
in y = 0. Alternatively, one can fix the first moment for odd and even vertices separately, i.e.〈∑

i χ2i

〉 = np/2 and
〈∑

i χ2i+1
〉 = np/2. For this case, the critical value of α does not change

but the asymptotic slope for Dyck paths changes to p/2. The fact that the critical value is αa

for all the above approximations is consistent with the results in [8]. However, the bound on
the limiting quenched average free energy can be improved by adding constraints.

In a general framework for the Morita approximation one considers a set of Lagrange
multipliers λ = (λC,∀C ⊆ {1, 2, . . . , n}) ∈ R

2n

and the corresponding partition function

Zn(α, λ|χ) =
∑
ω∈�n

exp

(
α

n∑
i=1

χi�i(ω) + �(λ|χ)

)
, (3)

where for each subset C of vertices, �(λ|χ) is used to impose the correct distribution for the
probability that exactly the vertices in C are coloured A. Specifically,

�(λ|χ) =
∑
C 
=∅

λC

[(∏
i∈C

χi

∏
i /∈C

(1 − χi)

)
− p|C|(1 − p)n−|C|

]
(4)

and the sum is over all C ⊆ {1, 2, . . . , n}. Minimizing n−1 log〈Zn(α, λ|χ)〉 with respect
to the λC’s yields the quenched average free energy κ̄n(α) for the model and ensures
that the colour distribution constraint is satisfied for each subset C 
= ∅ [1]. A Morita
approximation κM

n (α) for κ̄n(α) is obtained by relaxing some of these constraints (in
the annealed case, all the λC’s are set to zero) and minimizing n−1 log〈Zn(α, λ|χ)〉 with
respect to the reduced set λM of λC’s. This yields an upper bound on κ̄n(α) for the
model, κM

n (α) = minλM n−1 log〈Zn(α, λ|χ)〉 � κ̄n(α). The minimization is typically



F292 Fast Track Communication

quite complicated. However, one can also obtain an upper bound κU(α) on κ̄(α) via

κU(α) = min
λM

lim
n→∞

1

n
log〈Zn(α, λM |χ)〉

= min
λM

{− log(rG(α, λM))}
� lim

n→∞ κM
n (α) � κ̄(α) (5)

where rG(α, λM) is the radius of convergence of the generating function

G(z, α, λM) =
∞∑

n=0

zn〈Zn(α, λM |χ)〉. (6)

For both the annealed and first-order Morita approaches, G(z, α, λM) can be expressed in
terms of a homopolymer generating function which keeps track of the number of visits in
the walks. This is an important result because it allows one (in principle) to find the Morita
limiting free energy by looking at a re-parametrization of the well known singularity structure
of the homopolymer model.

For higher order Morita approximations, by using the methods we describe below, it is
still possible to relate G(z, α, λM) to a homopolymer generating function that however will
be a more complicated function of the paths involved. Let σ � 1 ∈ N be the order (defined
below) of the approximation and let B(σ) denote the related homopolymer generating function.
B(σ) can be obtained using standard factorization (renewal) arguments but we leave the details
of this to a subsequent paper. Rather here we focus on two methods for relating G(z, α, λM)

to B(σ) which depend on the choice of λM , and in order to show how the two methods work
we will focus on the second-order (σ = 2) approximation.

Transfer matrix approach

For ease of implementation of the transfer matrix approach, we assume periodic boundary
conditions for the colouring, i.e. χ0 = χn. For a transfer matrix approximation of order σ ,
we only impose colouring constraints that involve vertices whose labels are at most σ − 1
apart. With λ = (λ0, . . . , λ4) and even n � 0, the partition function, Z(2)

n (α, λ|χ), for the
second-order transfer matrix approximation for Motzkin paths is obtained from equation (3)
by replacing �(λ|χ) by

�(2)(λ|χ) = λ0

n/2∑
i=1

(χ2i−1 − p) + λ1

n/2∑
i=1

(1 − χ2i−1 − (1 − p)) + λ2

n∑
i=1

(χiχi−1 − p2)

+ λ3

n∑
i=1

((1 − χi)χi−1 + χi(1 − χi−1) − 2p(1 − p))

+ λ4

n∑
i=1

((1 − χi)(1 − χi−1) − (1 − p)2). (7)

This imposes the full set of colouring constraints on each odd vertex and imposes constraints
on the distribution of the number of A’s in each vertex pair (i − 1, i) for i = 1, . . . , n. Note
that some of these constraints are redundant (in fact only three constraints are necessary).
However, this form gives an indication of how we generalize to higher σ where, for vertex
sets including vertices which are at most σ − 2 apart, we impose the full set of colouring
constraints while for other vertex sets we only constrain the distribution of the number of
A’s. Full details for higher σ and for Dyck paths, where the constraints are defined slightly
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differently to take advantage of the fact that only even vertices can visit the surface, will be
provided in a subsequent paper.

Let wp(χi) denote the density function for the random variable χi . Averaging over χ

gives 〈
Z(2)

n (α, λ|χ)
〉 = e−nq(2)(λ)

∑
ω∈�n

Q(2)(α, λ|ω) (8)

where

q(2)(λ) = λ0

2
p +

λ1

2
(1 − p) + λ2p

2 + 2λ3p(1 − p) + λ4(1 − p)2, (9)

Q(2)(α, λ|ω) =
∫ (

n∏
i=1

dχi

)
n/2∏
i=1

1∏
j=0

√
wp(χ2i−2+j )wp(χ2i−1+j )

× exp

[
λ2+N(i,j) +

λ1−χ2i−1 + χ2i−2+j�2i−2+j (ω) + χ2i−1+j�2i−1+j (ω)

2

]
, (10)

and N(i, j) = χ2i−2+j + χ2i−1+j for j = 0, 1. The transfer matrix approach now involves
finding a sequence of 2 × 2 real matrices T (i)(α, λ|ω) for i = 1, . . . , n/2 such that

Q(2)(α, λ|ω) = Tr

(
n/2∏
i=1

T (i)(α, λ|ω)

)
(11)

and so that, using the properties of the trace of a real matrix [12],

Q(2)(α, λM |ω) � 2
n/2∏
i=1

√
η

(
T (i)(α, λ|ω)T (i)t (α, λ|ω)

)
(12)

where η(·) denotes the eigenvalue with largest modulus and At is the transpose of matrix A.
This bound on the trace will be tightest if the matrices are symmetric since

√
η(T T t ) = |η(T )|

(|·| denotes the modulus) for a real symmetric matrix T. For Motzkin paths, the matrix
T (i)(α, λ|ω) = T (i,0)(α, λ|ω)T (i,1)(α, λ|ω), where

T (i,j)(α, λ|ω) =

 (1 − p) eλ2+ λ1

2

√
(1 − p)p e

α�2i−1+j (ω)

2 +λ3+
λj

2√
(1 − p)p e

α�2i−2+j (ω)

2 +λ3+
λ1−j

2 p e
α�2i−2+j (ω)

2 +
α�2i−1+j (ω)

2 +λ4+ λ0
2


 . (13)

Note that if �2i−2(ω) = �2i (ω) then T (i,1) = T (i,0)t and so T (i) is symmetric. Note further
that T (i) only depends on ω through �(i) = (�2i−2(ω),�2i−1(ω),�2i (ω)) (the reference to
ω is dropped for convenience). Thus there are eight possible matrices for T (i) which can be
indexed by the binary string �(i), and one can rewrite (10) as

Q(2)(α, λM |ω) = Tr

(
n/2∏
i=1

T�(i)

)
�

n/2∏
i=1

(
η
(
T�(i)T t

�(i)

))1/2 =
7∏

j=0

(
η
(
TjT

t
j

))nj (ω)/2
, (14)

where the matrices in the last equality are indexed in base 10 and nj (ω) is the number of times
the j th binary sequence appears as a �(i) in �(ω). Hence the averaged partition function (8)
becomes

〈
Z(2)

n (α, λ|χ)
〉 = e−nq(2)(λ)

∑
ω∈�n

Tr

(
n/2∏
i=1

T�(i)

)
� e−nq(2)(λ)

∑
ω∈�n

7∏
j=0

(
η
(
TjT

t
j

))nj (ω)/2
. (15)
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Grouping together all walks with the same sequence of nj ’s yields

G(2)(z, α, λ) =
∑
n�0

zn
〈
Z(2)

n (α, λ|χ)
〉

�
∑
n�0

(
z e−q(2)(λ)

)n
∑

n0,...,n7

bn(n0, . . . , n7)

7∏
j=0

(
η
(
TjT

t
j

))nj /2

:= B(2)
(
z e−q(2)(λ), w0, . . . , w7

)
(16)

where wj = η
(
TjT

t
j

)1/2
and bn(n0, . . . , n7) is the number of walks in �n having nj segments

which have an associated visit string �(i) given by the sequence of bits in j base 2. Thus,
the second-order Morita partition function can be bounded above by a homopolymer partition
function. (For higher orders σ , T (i,j)(α, λ|χ) is a 2×(σ −1) matrix for j = 0 and a (σ −1)×2
matrix for j = 1; full details will be provided in a subsequent paper.) The approach is similar
for Dyck paths; however, the transfer matrix T (i)(α, λ|ω) can be defined so that it represents
the transition from vertex 2i − 1 to vertex 2i + 1 (rather than vertex 2i − 2 to 2i as above) and
is always symmetric.

Direct renewal approach

The standard factorization (or renewal) arguments for directed paths take advantage of the fact
that after the first return to the surface the remaining portion of the path is again a directed path.
However, correlation constraints such as 〈χiχi+1〉 = p2, i = 1, . . . , n − 1 are complicated
to factor at the location of the first return to the surface. This difficulty can be reduced by
considering only colouring constraints on non-overlapping vertex sequences. In fact, given
an order σ , for each i � 0, we impose the full set of colouring constraints on the vertices
(iσ + j, j = 1, . . . , σ ). Note that these sequences of vertices do not overlap. This will
have the advantage that we can write the partition function almost immediately in terms of a
homopolymer partition function. Again we limit our discussion here to the case σ = 2 and
refer to a subsequent paper for the full details and the generalization to higher values of σ .

With λ = (λ0, . . . , λ3) and even n � 0, the partition function for the second-order
approximation is now given by

Z(2)
n (α, λ|χ) = e−nq(2)(λ)

∑
ω∈�n

exp

(
α

n∑
i=1

χi�i(ω) +
n/2∑
i=1

λC(i)

)
(17)

where C(i) is the lexicographic order of the subcolouring (χ2i−1, χ2i ), and now

q(2)(λ) = 1
2 (λ3p

2 + λ2p(1 − p) + λ1(1 − p)p + λ0(1 − p)2). (18)

Thus

〈
Z(2)

n (α, λM |χ)
〉 = e−nq(2)(λ)

∑
ω∈�n

n/2∏
i=1

[p2eα(�2i−1(ω)+�2i (ω))+λ3 + p(1 − p) eα(�2i−1(ω))+λ2

+ (1 − p)p eα(�2i (ω))+λ1 + (1 − p)2eλ0 ]. (19)

The term in the square brackets depends only on the sequence (�2i−1(ω),�2i (ω)) and hence
can be determined from �(i) = (�2i−2(ω),�2i−1(ω),�2i (ω)) (as defined previously). Hence,
by grouping together all the walks that have the same sequence of nj ’s one now obtains

G(2)(z, α, λ) =
∑
n�0

zn
〈
Z(2)

n (α, λ|χ)
〉 = B(2)

(
z e−q(2)(λ), w0, . . . , w7

)
(20)
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where B(2) is the generating function (16), and where for i = 0, . . . , 3

wi = wi+4 = p2 eα(s1+s0)+λ3 + p(1 − p) eαs1+λ2 + (1 − p)p eαs0+λ1 + (1 − p)2eλ0 (21)

with the sequence s1s0 given by the bits in i base 2.

Finding the Morita approximation free energy

For a given order σ , the two approaches described above give the possibility of computing
from equation (5) the upper bound κ

(σ)
U (α) in terms of the singularities of the generating

function B(σ) (for σ = 2, see equation (16) for the transfer-matrix approach and equation (20)
for the renewal method). Indeed the radius of convergence of G(σ)(z, α, λ) will satisfy the
inequality

rG(α, λ) � eq(σ)(λ) min{|z1|, |z2|, . . . , |z1+nr
|} (22)

where z2, z3, . . . , z1+nr
are the poles of B(σ), while z1 is the branch cut governing the desorbed

phase. The zi’s are functions of α and λ. Therefore from equation (5), the upper bound κ
(σ)
U (α)

becomes

κ
(σ)
U (α) = max

λ
{q(σ)(λ) + min{log|z1|, log|z2|, . . . , log|z1+nr

|}}. (23)

Closed form expressions for the zi’s are available for σ = 1 for Motzkin paths and σ = 2
for Dyck paths. For these choices of σ it is possible to determine κ

(σ)
U either exactly or

by numerical optimization, depending on the value of α. In particular, it is still possible to
determine the desorbed phase boundaries. For higher values of σ , determining z2, . . . , z1+nr

involves finding the roots of a polynomial of degree greater than seven for Motzkin paths and
greater than five for Dyck paths. Hence the roots can only be determined numerically for
specific choices of λ, α and thus the optimization must also be done numerically.

Lower bound

We also explored a lower bound on the quenched average free energy which we expect to be
best for large values of α. For a given χ we only include those paths which have visits at
vertices where χi = 1, i.e., for Motzkin paths we calculate

κ
(σ)
L∗ (α) = αp + σ−1〈log d∗

σ (χ)〉 � κ̄σ (α) � sup
σ

κ̄σ (α) = κ̄(α) (24)

where d∗
σ (χ) is the number of σ -edge paths which have visits at vertices where χi = 1 and the

last equality can be proved following arguments in [11]. At infinite α, the only contribution to
the quenched average free energy will be from paths with visits at the vertices where χi = 1
so that limα→∞[κ̄σ (α) − αp] = κ

(σ)
L∗ (α) − αp, which is independent of α. Combinatorial

arguments lead to

κ
(σ)
L∗ (α) = αp +

(1 − p)σ

σ
log dσ +

p

σ

σ−1∑
i=0

(1 − p)i(log di + log di+1)

+
p2

σ

σ−2∑
j=0

(σ − 1 − j)(1 − p)j log dj+1 (25)

where dn is the number of Motzkin paths of length n. An explicit formula for dn can be
determined from the Motzkin path generating function M(z) = ∑

n dnz
n = 1−z−√

1−2z−3z2

2z2

(see [1]).
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Table 1. Bounds on κ̄(α) at α = 2, 4, . . . , 10 listed by the method used (bnd) and the order (σ ).
(a) For Motzkin paths: upper bounds are for σ = 1, 2, 4 and, as indicated, based on results of [2],
direct renewal (DR) via equation (20) or transfer matrix (TM) via equation (16); and lower bounds
(LB) are for order σ = 398 and based on equation (25). (b) For Dyck paths: upper bounds are for
σ = 1, 2, 4, 6, 8, 12 and, as indicated, based on the results of [2], direct renewal (DR) or transfer
matrix (TM); and lower bounds (LB) are for σ = 400.

(a) Motzkin path bounds (b) Dyck path bounds

σ bnd α = 2 4 6 8 10 α = 2 4 6 8 10

1[2] 1.457 98 2.379 63 3.369 25 4.367 85 5.367 66 0.788 47 1.225 01 1.717 01 2.215 93 2.715 79
2DR 1.457 50 2.378 99 3.368 60 4.367 20 5.367 01 0.788 47 1.225 01 1.717 01 2.215 93 2.715 79
2TM 1.457 17 2.378 62 3.368 24 4.366 84 5.366 65 0.788 47 1.225 01 1.717 01 2.215 93 2.715 79
4DR 1.457 03 2.378 30 3.367 88 4.366 47 5.366 28 0.787 79 1.223 31 1.715 14 2.214 05 2.713 90
4TM 1.456 88 2.378 18 3.367 77 4.366 36 5.366 17 0.787 79 1.223 31 1.715 14 2.214 05 2.713 90
6DR 0.787 47 1.222 61 1.714 38 2.213 27 2.713 12
8DR 0.787 29 1.222 26 1.713 99 2.212 87 2.712 72
12DR 0.787 10 1.221 91 1.713 61 2.212 49
σLB 1.364 45 2.364 45 3.364 45 4.364 45 5.364 45 0.710 24 1.210 24 1.710 24 2.210 24 2.710 24

Results for p = 1/2

Since the Morita approximations will yield the same limiting free energy for all α � αa ,
the annealed critical point, we confine our discussion of the upper bounds to the region
α > αa (= log 2 and log 3 for Motzkin and Dyck paths respectively). By [8], the Morita
approximation bounds all exhibit critical points at αa . This does not prohibit the transfer
matrix bounds, which are upper bounds on Morita approximations, from having a critical
point smaller than αa . However, the transfer matrix bounds presented here do have critical
points at αa . The upper and lower bounds for various values of σ are shown for Motzkin
paths in table 1 (a) and for Dyck paths in table 1 (b). It is interesting to note that, at least for
σ = 2, 4, the transfer matrix upper bound is better than the corresponding direct renewal upper
bound in the case of Motzkin paths, whereas for Dyck paths the two bounds are apparently (at
least to nine decimal places) the same. The latter result is expected to be because the transfer
matrix only overlaps at odd vertices for Dyck paths and these vertices cannot visit the surface.
For Dyck paths the first-order moment Morita approximation in which even and odd vertices
are distinguished (see [1, 2]) is exactly the same as the second-order direct renewal Morita
approximation since the sets of constraints involved end up being equivalent.

In figure 1 we show how the lower bound on κ̄(α) improves as σ increases, for Dyck
paths at α = 6. Similar behaviour is observed for Motzkin paths. In figure 2 we show our
best upper and lower bounds on κ̄(α) for the two models as a function of α.

We notice that the difference between the upper and lower bounds is extremely small at
large α. For instance, for Dyck paths at α = 8, 2.210 24 � κ̄(α) � 2.212 87. This identifies
the free energy very precisely, and much more precisely than one could hope to do by Monte
Carlo or exact enumeration methods alone. The lower bound becomes less useful at smaller
α, and especially as we approach αa . The higher order Morita approximations improve only
modestly over the first-order Morita upper bound but, at least for large α, this is because the
first-order Morita approximation is already very good. For Dyck paths, for α � 6, the higher
order Morita approximation halves the gap between the upper and lower bounds, and we do
almost as well for Motzkin paths.

For situations where the first-order Morita approximation is less effective (e.g. for the
localization problem, deep inside the localized phase [2]) we expect that higher order Morita
approximations will give a substantial improvement. This will be explored in a later paper.
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Figure 1. Dyck path upper bounds, κ
(σ)
U (α) (◦) (from direct renewal) for σ = 2, 4, 6, 8, 12, and

lower bounds, κ
(σ)
L∗ (α) (∗) for σ = 2, 4, . . . , 400, on κ̄(α) at α = 6. A closer view is shown on

the right. The lower bound becomes quite close to the upper bound as σ → ∞, although at α = 6
they need not have the same limiting value.
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Figure 2. Comparison of best available upper (solid line) and lower (dashed line) bounds on κ̄(α)

as a function of α for Dyck paths (on the left with σ = 8 (DR) and σ = 400 (LB)) and Motzkin
paths (on the right with σ = 4 (TM) and σ = 398 (LB)). The bounds are equal for α � αa (∗).
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